Regular Expression R Cheat Sheet



characters — what to seek

Regular Expressions Cheat Sheet by Dave Child (DaveChild) via cheatography.com/1/cs/5/ Anchors ^ Start of string, or start of line in multi-line pattern A Start of string $ End of string, or end of line in multi-line pattern Z End of string b Word boundary B Not word boundary End of word Character Classes c Control character. Regular expression syntax cheatsheet This page provides an overall cheat sheet of all the capabilities of RegExp syntax by aggregating the content of the articles in the RegExp guide. If you need more information on a specific topic, please follow the link on the corresponding heading to access the full article or head to the guide. Logical grouping of part of an expression. 0 or more of previous expression. + 1 or more of previous expression.? 0 or 1 of previous expression; also forces minimal matching when an expression might match several strings within a search string. Preceding one of the above, it makes it a literal instead of a special character. The tables below are a reference to basic regex. While reading the rest of the site, when in doubt, you can always come back and look here. (It you want a bookmark, here's a direct link to the regex reference tables).I encourage you to print the tables so you have a cheat sheet on your desk for quick reference.

ring matches ring, springboard, ringtone, etc.
. matches almost any character

h.o matches hoo, h2o, h/o, etc.

Regex wUse to search for these special characters:

[ ^ $ . | ? * + ( ) { }

ring? matches ring?

(quiet) matches (quiet)

c:windows matches c:windows

alternatives — | (OR)
cat|dog match cat or dog
order matters if short alternative is part of longer
id|identity matches id or identity

regex engine is 'eager', stops comparing
as soon as 1st alternative matches

identity|id matches id or identity
order longer to shorter when alternatives overlap
(To match whole words, see scope and groups.)
character classes — [allowed] or [^NOT allowed]
[aeiou] match any vowel
[^aeiou] match a NON vowel
Regular Expression R Cheat Sheet
r[iau]ng match ring, wrangle, sprung, etc.
gr[ae]y match gray or grey
[a-zA-Z0-9] match any letter or digit
(In [ ] always escape . ] and sometimes ^ - .)
shorthand classes
w 'word' character (letter, digit, or underscore)
d digit
s whitespace (space, tab, vtab, newline)
W, D, or S, (NOT word, digit, or whitespace)

[DS] means not digit OR whitespace, both match

[^ds] disallow digit AND whitespace

occurrences — ? * + {n} {n,} {n,n}
? 0 or 1

colou?r match color or colour

* 0 or more

[BW]ill[ieamy's]* match Bill, Willy, William's etc.

+ 1 or more Regular Expression R Cheat Sheet

[a-zA-Z]+ match 1 or more letters

{n} require n occurrences

d{3}-d{2}-d{4} match a SSN

{n,} require n or more

[a-zA-Z]{2,} 2 or more letters

{n,m} require n - m

[a-z]w{1,7} match a UW NetID

* greedy versus *? lazy
* + and {n,} are greedy — match as much as possible
<.+> finds 1 big match in <b>bold</b>
*? +? and {n,}? are lazy — match as little as possible
<.+?> finds 2 matches in <b>bold</b>
comments — (?#comment)
(?#year)(19|20)dd embedded comment
(?x)(19|20)dd #year free spacing & EOL comment

(see modifiers)

scope — b B ^ $
b 'word' edge (next to non 'word' character)

bring word starts with 'ring', ex ringtone

ringb word ends with 'ring', ex spring

b9b match single digit 9, not 19, 91, 99, etc..

b[a-zA-Z]{6}b match 6-letter words

B NOT word edge

BringB match springs and wringer

^ start of string $ end of string

^d*$ entire string must be digits

Regular Expression R Cheat Sheet

^[a-zA-Z]{4,20}$ string must have 4-20 letters

^[A-Z] string must begin with capital letter

[.!?')]$ string must end with terminal puncutation

groups — ( )
(in|out)put match input or output
d{5}(-d{4})? US zip code ('+ 4' optional)
Locate all PHP input variables:

$_(GET|POST|REQUEST|COOKIE|SESSION|SERVER)[.+]

NB: parser tries EACH alternative if match fails after group.
Can lead to catastrophic backtracking.
back references — n
each ( ) creates a numbered 'back reference'
(to) (be) or not 1 2 match to be or not to be
([^s])1{2} match non-space, then same twice more aaa, ...
b(w+)s+1b match doubled words
non-capturing group — (?: ) prevent back reference
on(?:click|load) is faster than on(click|load)
use non-capturing or atomic groups when possible
atomic groups — (?>a|b) (no capture, no backtrack)
(?>red|green|blue)
faster than non-capturing
alternatives parsed left to right without return
(?>id|identity)b matches id, but not identity

'id' matches, but 'b' fails after atomic group,
parser doesn't backtrack into group to retry 'identity'

Regular Expression R Cheat Sheet

If alternatives overlap, order longer to shorter.
lookahead — (?= ) (?! ) lookbehind — (?<= ) (?<! )
bw+?(?=ingb) match warbling, string, fishing, ...
b(?!w+ingb)w+b words NOT ending in 'ing'
(?<=bpre).*?b match pretend, present, prefix, ...
bw{3}(?<!pre)w*?b words NOT starting with 'pre'

(lookbehind needs 3 chars, w{3}, to compare w/'pre')

bw+(?<!ing)b match words NOT ending in 'ing'
Regex cheat sheet pdf
(see LOOKAROUND notes below)
if-then-else — (?ifthen|else)
match 'Mr.' or 'Ms.' if word 'her' is later in string
M(?(?=.*?bherb)s|r). lookahead for word 'her'
(requires lookaround for IF condition)
modifiers — i s m x
ignore case, single-line, multi-line, free spacing
(?i)[a-z]*(?-i) ignore case ON / OFF
(?s).*(?-s) match multiple lines (causes . to match newline)
(?m)^.*;$(?-m)^ & $ match lines not whole string
(?x) #free-spacing mode, this EOL comment ignored
d{3} #3 digits (new line but same pattern)
-d{4} #literal hyphen, then 4 digits
(?-x) (?#free-spacing mode OFF)
/regex/ismx modify mode for entire string

A few examples:

  • (?s)<p(?(?=s) .*?)>(.*?)</p> span multiple lines
  • (?s)<p(?(?=s) .*?)>(.*?)</p> locate opening '<p'
  • (?s)<p(?(?=s) .*?)>(.*?)</p> create an if-then-else
  • (?s)<p(?(?=s) .*?)>(.*?)</p> lookahead for a whitespace character
  • (?s)<p(?(?=s) .*?)>(.*?)</p> if found, attempt lazy match of any characters until ...
  • (?s)<p(?(?=s) .*?)>(.*?)</p> closing angle brace
  • (?s)<p(?(?=s) .*?)>(.*?)</p> capture lazy match of all characters until ...
  • (?s)<p(?(?=s) .*?)>(.*?)</p> closing '</p>'

The lookahead prevents matches on PRE, PARAM, and PROGRESS tags by only allowing more characters in the opening tag if P is followed by whitespace. Otherwise, '>' must follow '<p'.

LOOKAROUND notes

  • (?= ) if you can find ahead
  • (?! ) if you can NOT find ahead
  • (?<= ) if you can find behind
  • (?<! ) if you can NOT find behind
convert Firstname Lastname to Lastname, Firstname (& visa versa)
Pattern below uses lookahead to capture everything up to a space, characters, and a newline.
The 2nd capture group collects the characters between the space and the newline.
This allows for any number of names/initials prior to lastname, provided lastname is at the end of the line.

Find: (.*)(?= .*n) (.*)n

Repl: 2, 1n — insert 2nd capture (lastname) in front of first capture (all preceding names/initials)

Reverse the conversion.

Find: (.*?), (.*?)n — group 1 gets everything up to ', ' — group 2 gets everything after ', '

Repl: 2 1n

lookaround groups are non-capturing
If you need to capture the characters that match the lookaround condition, you can insert a capture group inside the lookaround.

(?=(sometext)) the inner () captures the lookahead

This would NOT work: ((?=sometext)) Because lookaround groups are zero-width, the outer () capture nothing.

lookaround groups are zero-width
They establish a condition for a match, but are not part of it.
Compare these patterns: re?d vs r(?=e)d
re?d — match an 'r', an optional 'e', then 'd' — matches red or rd
r(?=e)d — match 'r' (IF FOLLOWED BY 'e') then see if 'd' comes after 'r'
  • The lookahead seeks 'e' only for the sake of matching 'r'.
  • Because the lookahead condition is ZERO-width, the expression is logically impossible.
  • It requires the 2nd character to be both 'e' and 'd'.
  • For looking ahead, 'e' must follow 'r'.
  • For matching, 'd' must follow 'r'.
fixed-width lookbehind
Most regex engines depend on knowing the width of lookbehind patterns. Ex: (?<=h1) or (?<=w{4}) look behind for 'h1' or for 4 'word' characters.
This limits lookbehind patterns when matching HTML tags, since the width of tag names and their potential attributes can't be known in advance.
variable-width lookbehind
.NET and JGSoft support variable-width lookbehind patterns. Ex: (?<=w+) look behind for 1 or more word characters.
The first few examples below rely on this ability.

Lookaround groups define the context for a match. Here, we're seeking .* ie., 0 or more characters.
A positive lookbehind group (?<= . . . ) preceeds. A positive lookahead group (?= . . . ) follows.
These set the boundaries of the match this way:

  • (?<=<(w+)>).*(?=</1>) look behind current location
  • (?<=<(w+)>).*(?=</1>) for < > surrounding ...
  • (?<=<(w+)>).*(?=</1>) one or more 'word' characters. The ( ) create a capture group to preserve the name of the presumed tag: DIV, H1, P, A, etc.
  • (?<=<(w+)>).*(?=</1>) match anything until
  • (?<=<(w+)>).*(?=</1>) looking ahead from the current character
  • (?<=<(w+)>).*(?=</1>) these characters surround
  • (?<=<(w+)>).*(?=</1>) the contents of the first capture group

In other words, advance along string until an opening HTML tag preceeds. Match chars until its closing HTML tag follows.
The tags themselves are not matched, only the text between them.

To span multiple lines, use the (?s) modifier. (?s)(?<=<cite>).*(?=</cite>) Match <cite> tag contents, regardless of line breaks.

As in example above, the first group (w+) captures the presumed tag name, then an optional space and other characters ?.*? allow for attributes before the closing >.

  • class='.*?bredb.*?' this new part looks for class=' and red and ' somewhere in the opening tag
  • b ensures 'red' is a single word
  • .*? allow for other characters on either side of 'red' so pattern matches class='red' and class='blue red green' etc.

Here, the first group captures only the tag name. The tag's potential attributes are outside the group.

  • (?i)<([a-z][a-z0-9]*)[^>]*>.*?</1> set ignore case ON
  • (?i)<([a-z][a-z0-9]*)[^>]*>.*?</1> find an opening tag by matching 1 letter after <
  • (?i)<([a-z][a-z0-9]*)[^>]*>.*?</1> then match 0 or more letters or digits
  • (?i)<([a-z][a-z0-9]*)[^>]*>.*?</1> make this tag a capture group
  • (?i)<([a-z][a-z0-9]*)[^>]*>.*?</1> match 0 or more characters that aren't > — this allows attributes in opening tag
  • (?i)<([a-z][a-z0-9]*)[^>]*>.*?</1> match the presumed end of the opening tag

    (NB: This markup <a> would end the match early. Doesn't matter here. Subsequent < pulls match to closing tag. But if you attempted to match only the opening tag, it might be truncated in rare cases.)

  • (?i)<([a-z][a-z0-9]*)[^>]*>.*?</1> lazy match of all of tag's contents
  • (?i)<([a-z][a-z0-9]*)[^>]*>.*?</1> match the closing tag — 1 refers to first capture group

The IF condition can be set by a backreference (as here) or by a lookaround group.

(()?d{3} optional group ( )? matches '(' prior to 3-digit area code d{3} — group creates back reference #1
(?(1)) ?|[-/ .]) (1) refers to group 1, so if '(' exists, match ')' followed by optional space, else match one of these: '- / . '
d{3}[- .]d{4} rest of phone number

For a quick overview: http://www.codeproject.com/KB/dotnet/regextutorial.aspx.

For a good tutorial: http://www.regular-expressions.info.

Intro

The following characters are reserved: []().^$|?*+{}. You’ll need to escape these characters in your patterns to match them in your input strings.

There’s a static method of the regex class that can escape text for you.

Ref:

Named Capture Groups

Because $Matches is of type [Hashtable] we can convert it directly to a [PSCustomObject]:

If you need the properties to be in a specific order this won’t work. But you can use a class for that instead:

Substitutions

The substitution is done by using the $ character before the group identifier.

Two ways to reference capturing groups are by Number and by Name.

  • By Number - Capturing Groups are numbered from left to right.

  • By Name - Capturing Groups can also be referenced by name.

The $& expression represents all the text matched.

WARNING
Since the $ character is used in string expansion, you’ll need to use literal strings with substitution, or escape the $ character when using double quotes.

Additionally, if you want to have the $ as a literal character, use $$ instead of the normal escape characters. When using double quotes, still escape all instances of $ to avoid incorrect substitution.

Unicode Code Point ranges

Explanation:

The ranges of Unicode characters which are routinely used for Chinese and Japanese text are:

  • U+3040 - U+30FF: hiragana and katakana (Japanese only)
  • U+3400 - U+4DBF: CJK unified ideographs extension A (Chinese, Japanese, and Korean)
  • U+4E00 - U+9FFF: CJK unified ideographs (Chinese, Japanese, and Korean)
  • U+F900 - U+FAFF: CJK compatibility ideographs (Chinese, Japanese, and Korean)
  • U+FF66 - U+FF9F: half-width katakana (Japanese only)

As a regular expression, this would be expressed as:

This does not include every character which will appear in Chinese and Japanese text, but any significant piece of typical Chinese or Japanese text will be mostly made up of characters from these ranges.

Note that this regular expression will also match on Korean text that contains hanja. This is an unavoidable result of Han unification.

Unicode regex’s let you use code-point ranges or: 1 scripts, [2] blocks, or [3] categories

Blocks are sequential:

U+3400 - U+4DBF is p{InCJK_Unified_Ideographs_Extension_A}U+4E00 - U+9FFF is p{InCJK_Unified_Ideographs}

quote (from below) Some languages are composed of multiple scripts. There is no Japanese Unicode script. Instead, Unicode offers the Hiragana, Katakana, Han, and Latin scripts that Japanese documents are usually composed of.

Here are some refs:

Regex Options

There are overloads of the static [Regex]::Match() method that allow to provide the desired [RegexOptions] programmatically:

Options are ([System.Text.RegularExpressions.RegexOptions] | Get-Member -Static -MemberType Property):

  • Compiled
  • CultureInvariant
  • ECMAScript
  • ExplicitCapture
  • IgnoreCase
  • IgnorePatternWhitespace
  • Multiline
  • None
  • RightToLeft
  • Singleline

Regular Expression R Cheat Sheet Download

Ref:





Comments are closed.